Partial residuals
Usage
partial_residuals(object, ...)
# S3 method for class 'gam'
partial_residuals(object, select = NULL, partial_match = FALSE, ...)Arguments
- object
an R object, typically a model. Currently only objects of class
"gam"(or that inherit from that class) are supported.- ...
arguments passed to other methods.
- select
character, logical, or numeric; which smooths to plot. If
NULL, the default, then all model smooths are drawn. Numericselectindexes the smooths in the order they are specified in the formula and stored inobject. Characterselectmatches the labels for smooths as shown for example in the output fromsummary(object). Logicalselectoperates as per numericselectin the order that smooths are stored.- partial_match
logical; should smooths be selected by partial matches with
select? IfTRUE,selectcan only be a single string to match against.
Examples
## load mgcv
load_mgcv()
## example data - Gu & Wahba four term model
df <- data_sim("eg1", n = 400, seed = 42)
## fit the model
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")
## extract partial residuals
partial_residuals(m)
#> # A tibble: 400 x 4
#> `s(x0)` `s(x1)` `s(x2)` `s(x3)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.3527 -1.321 -2.180 0.6077
#> 2 -0.1233 0.5013 -1.775 0.9613
#> 3 1.429 1.515 5.609 0.9910
#> 4 -1.110 -1.700 -0.8882 -0.6593
#> 5 -2.120 -0.01378 -2.733 -3.012
#> 6 1.254 -1.224 3.915 0.07275
#> 7 -0.5220 3.023 -0.8197 -1.019
#> 8 1.398 0.2184 7.055 1.897
#> 9 2.797 0.4969 7.329 2.498
#> 10 1.151 -0.2267 0.7202 0.7437
#> # i 390 more rows
## and for a select term
partial_residuals(m, select = "s(x2)")
#> # A tibble: 400 x 1
#> `s(x2)`
#> <dbl>
#> 1 -2.180
#> 2 -1.775
#> 3 5.609
#> 4 -0.8882
#> 5 -2.733
#> 6 3.915
#> 7 -0.8197
#> 8 7.055
#> 9 7.329
#> 10 0.7202
#> # i 390 more rows
## or with partial matching
partial_residuals(m, select = "x", partial_match = TRUE) # returns all
#> # A tibble: 400 x 4
#> `s(x0)` `s(x1)` `s(x2)` `s(x3)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.3527 -1.321 -2.180 0.6077
#> 2 -0.1233 0.5013 -1.775 0.9613
#> 3 1.429 1.515 5.609 0.9910
#> 4 -1.110 -1.700 -0.8882 -0.6593
#> 5 -2.120 -0.01378 -2.733 -3.012
#> 6 1.254 -1.224 3.915 0.07275
#> 7 -0.5220 3.023 -0.8197 -1.019
#> 8 1.398 0.2184 7.055 1.897
#> 9 2.797 0.4969 7.329 2.498
#> 10 1.151 -0.2267 0.7202 0.7437
#> # i 390 more rows