summary.predcoca.Rd
summary
methods for classes "predcoca"
and
"symcoca"
. These provide a summary of the main results of a
Co-Correspondence Analysis model.
# S3 method for predcoca summary(object, axes = NULL, ...) # S3 method for symcoca summary(object, ...)
object | an object of class |
---|---|
axes | numeric; how many axes to summarise? The default is to display 6 axes or all available axes, whichever is the smaller. |
... | arguments to be passed to other methods. |
A list with the some of the following components:
The site and/or species scores for the axes requested.
The call used to fit the model.
The eigenvalues for the axes requested. Not for
predcoca.simpls
.
the names of the response and predictor either supplied by the user or derived from the original call.
a list with two components loadings1
and
loadings2
, which refer to the response and the predictor
matrices respectively. (Only for predictive CoCA models.)
a list with components Yblock
and
Xblock
containing the amount of variance explained on each
CoCA axis in the response and the predictor respectively. (Only for
predictive CoCA models.)
a list with components Yblock
and Xblock
containing the total variance in the response and the predictor data
sets respectively
a list with components total
and residual
containing the total and residual inertia (variance) in the response
and the predictor matrices of a symmetric CoCA model. (Only for
symmetric CoCA models.)
the scaling used/requested. (Only for symmetric CoCA models.)
Gavin L. Simpson
The model fitting function coca
od <- options(digits = 4) ## symmetric CoCA data(beetles) data(plants) ## log transform the bettle data beetles <- log(beetles + 1) ## fit the model bp.sym <- coca(beetles ~ ., data = plants, method = "symmetric") #> #> Removed some species that contained no data in: beetles, plants summary(bp.sym) #> #> Symmetric Co-Correspondence Analysis #> #> Call: symcoca(y = y, x = x, n.axes = n.axes, R0 = weights, symmetric = #> symmetric, nam.dat = nam.dat) #> #> Inertia: #> Total Explained Residual #> beetles: 5.70 5.60 0.09 #> plants: 6.16 6.07 0.09 #> #> Eigenvalues: #> COCA 1 COCA 2 COCA 3 COCA 4 COCA 5 COCA 6 COCA 7 COCA 8 #> 5.91e-01 3.16e-01 2.03e-01 1.04e-01 6.69e-02 6.11e-02 5.26e-02 4.45e-02 #> COCA 9 COCA 10 COCA 11 COCA 12 COCA 13 COCA 14 COCA 15 COCA 16 #> 3.51e-02 2.31e-02 2.18e-02 1.43e-02 1.34e-02 1.10e-02 1.02e-02 8.39e-03 #> COCA 17 COCA 18 COCA 19 COCA 20 COCA 21 COCA 22 COCA 23 COCA 24 #> 7.44e-03 4.85e-03 4.15e-03 3.45e-03 2.82e-03 2.42e-03 2.26e-03 1.78e-03 #> COCA 25 COCA 26 COCA 27 COCA 28 COCA 29 #> 1.30e-03 1.06e-03 8.53e-04 2.93e-04 5.56e-05 ## Predictive CoCA bp.pred <- coca(beetles ~ ., data = plants) #> #> Removed some species that contained no data in: beetles, plants summary(bp.pred, axes = 1:2) #> #> Predictive Co-Correspondence Analysis #> #> Call: predcoca.simpls(y = y, x = x, R0 = weights, n.axes = n.axes, #> nam.dat = nam.dat) #> #> Percentage Variance Explained: #> #> Y-block: variance explained in beetles (response) #> Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 #> Individual: 8.18 6.38 5.37 6.91 3.72 5.53 4.18 3.59 #> Cumulative: 8.18 14.56 19.93 26.84 30.56 36.10 40.27 43.87 #> Comp 9 Comp 10 Comp 11 Comp 12 Comp 13 Comp 14 Comp 15 #> Individual: 4.02 3.35 4.50 2.46 3.33 2.56 3.21 #> Cumulative: 47.89 51.24 55.73 58.19 61.52 64.08 67.29 #> Comp 16 Comp 17 Comp 18 Comp 19 Comp 20 Comp 21 Comp 22 #> Individual: 3.32 1.71 2.66 1.96 1.76 1.73 2.17 #> Cumulative: 70.60 72.31 74.97 76.93 78.69 80.42 82.59 #> Comp 23 Comp 24 Comp 25 Comp 26 Comp 27 Comp 28 Comp 29 #> Individual: 1.44 1.81 1.34 2.49 1.56 3.54 2.85 #> Cumulative: 84.02 85.84 87.18 89.67 91.22 94.76 97.61 #> #> X-block: variance explained in plants (predictor) #> Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 #> Individual: 21.7114 16.2242 12.8109 5.4318 7.2780 3.7984 #> Cumulative: 21.7114 37.9356 50.7466 56.1784 63.4564 67.2548 #> Comp 7 Comp 8 Comp 9 Comp 10 Comp 11 Comp 12 #> Individual: 4.3291 4.2956 2.8320 2.8737 1.7862 2.4498 #> Cumulative: 71.5839 75.8795 78.7115 81.5852 83.3714 85.8212 #> Comp 13 Comp 14 Comp 15 Comp 16 Comp 17 Comp 18 #> Individual: 1.5557 1.6480 1.3222 1.1388 1.6991 0.8933 #> Cumulative: 87.3769 89.0249 90.3471 91.4859 93.1850 94.0783 #> Comp 19 Comp 20 Comp 21 Comp 22 Comp 23 Comp 24 #> Individual: 0.8779 0.8904 0.8645 0.6373 0.7220 0.5669 #> Cumulative: 94.9562 95.8466 96.7111 97.3484 98.0704 98.6373 #> Comp 25 Comp 26 Comp 27 Comp 28 Comp 29 #> Individual: 0.6544 0.3002 0.2774 0.0944 0.0362 #> Cumulative: 99.2918 99.5920 99.8694 99.9638 100.0000 options(od)