envfit
objectsfortify.envfit.Rd
Produces a tidy data frame from the results of an envfit
object.
# S3 method for envfit
fortify(model, data, ...)
an object of class envfit
, the result of a call to envfit
.
additional data to augment the envfit
results. Currently ignored.
arguments passed to scores.envfit
.
A data frame with columns label
, type
, containing the label for, and whether each row refers to, the fitted vector or factor. Remaining variables are coordinates on the respective ordination axes returned by scores.envfit
.
data(varespec, varechem)
ord <- metaMDS(varespec)
#> Square root transformation
#> Wisconsin double standardization
#> Run 0 stress 0.1843196
#> Run 1 stress 0.2394977
#> Run 2 stress 0.2085514
#> Run 3 stress 0.1948413
#> Run 4 stress 0.1985581
#> Run 5 stress 0.2541419
#> Run 6 stress 0.2253395
#> Run 7 stress 0.2200285
#> Run 8 stress 0.1843196
#> ... New best solution
#> ... Procrustes: rmse 1.989378e-05 max resid 7.970139e-05
#> ... Similar to previous best
#> Run 9 stress 0.1825658
#> ... New best solution
#> ... Procrustes: rmse 0.04161526 max resid 0.1517552
#> Run 10 stress 0.2230072
#> Run 11 stress 0.2160285
#> Run 12 stress 0.2109615
#> Run 13 stress 0.1825658
#> ... Procrustes: rmse 1.670552e-05 max resid 3.979495e-05
#> ... Similar to previous best
#> Run 14 stress 0.2109006
#> Run 15 stress 0.1948413
#> Run 16 stress 0.2028828
#> Run 17 stress 0.2080756
#> Run 18 stress 0.1948413
#> Run 19 stress 0.2673294
#> Run 20 stress 0.2313657
#> *** Best solution repeated 1 times
fit <- envfit(ord, varechem, perm = 199)
fortify(fit)
#> label type NMDS1 NMDS2
#> 1 N Vector -0.02884261 -0.5028122
#> 2 P Vector 0.27281935 0.3455383
#> 3 K Vector 0.32599243 0.2732269
#> 4 Ca Vector 0.43970585 0.4674607
#> 5 Mg Vector 0.41331452 0.5061694
#> 6 S Vector 0.08008409 0.4108305
#> 7 Al Vector -0.63271809 0.3558146
#> 8 Fe Vector -0.62445871 0.2347342
#> 9 Mn Vector 0.57765899 -0.4351762
#> 10 Zn Vector 0.26769898 0.3409650
#> 11 Mo Vector -0.22294289 0.1060272
#> 12 Baresoil Vector 0.46317916 -0.1903682
#> 13 Humdepth Vector 0.67271180 -0.2598022
#> 14 pH Vector -0.31130791 0.3658913
data(dune, dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env, perm = 199)
fortify(fit)
#> label type CA1 CA2
#> 1 A1 Vector -0.5560989 -0.03376924
#> 2 Moisture1 Centroid 0.7484337 0.14227818
#> 3 Moisture2 Centroid 0.4651928 0.21556841
#> 4 Moisture4 Centroid -0.1826781 0.73151540
#> 5 Moisture5 Centroid -1.1142548 -0.57080238